Product inequalities for multivariate Gaussian, gamma, and positively upper orthant dependent distributions

نویسندگان

چکیده

The Gaussian product inequality is an important conjecture concerning the moments of random vectors. While all attempts to prove in full generality have been unsuccessful date, numerous partial results derived recent decades and we provide here further on problem. Most importantly, establish a strong version for multivariate gamma distributions case nonnegative correlations, thereby extending result recently by Genest Ouimet (2021). Further, show that holds with exponents vectors positive components whenever underlying vector positively upper orthant dependent. Finally, negative follows directly from correlation inequality.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rosenthal’s Type Inequalities for Negatively Orthant Dependent Random Variables

In this paper, we obtain some Rosenthal’s type inequalities for negatively orthant dependent (NOD) random variables.

متن کامل

Concentration Inequalities for Multivariate Distributions: I. Multivariate Norivial Distributions

Let X rv Np(O, E), the p-variate normal distribution with mean °and positive definite covariance matrix .E. Anderson (1955) showed that if .E2 .E1 is positive semidefinite then PEl (C) 2: P E2(C) for every centrally symmetric (-C = convex set C ~ RP. Fefferman, Jodeit, and Perlman (1972) extended this result to elliptically contoured distributions. In the present paper similar multivariate f f"...

متن کامل

Orthant tail dependence of multivariate extreme value distributions

AMS 2000 subject classifications: 62H20 62P05 Keywords: Tail dependence Heavy tails Copula Multivariate extreme value distribution Marshall–Olkin distribution Archimedean copula Contagion risk a b s t r a c t The orthant tail dependence describes the relative deviation of upper-(or lower-) orthant tail probabilities of a random vector from similar orthant tail probabilities of a subset of its c...

متن کامل

Modelling Dependent Uncertainties by Multivariate Gaussian Distributions in SMAA

We consider multicriteria decision-aid (MCDA) problems with multiple decision makers. In such problems, the uncertainty or inaccuracy of the criteria measurements can be represented as probability distributions. In many real-life problems the uncertainties may be dependent. However, it is often difficult to quantify these dependencies. Also most of the existing MCDA methods are unable to handle...

متن کامل

Preconditioned Methods for Sampling Multivariate Gaussian Distributions

A common problem in statistics is to compute sample vectors from a multivariate Gaussian distribution with zero mean and a given covariance matrix A. A canonical approach to the problem is to compute vectors of the form y = Sz, where S is the Cholesky factor or square root of A, and z is a standard normal vector. When A is large, such an approach becomes computationally expensive. This paper co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2023

ISSN: ['1879-2103', '0167-7152']

DOI: https://doi.org/10.1016/j.spl.2023.109820